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Foreword

By John Kershaw, VIPER Project Leader

Introduction

The VIPER microprocessor chip is one of the results of a research program on

high-integrity computing being carried out at the Royal Signals and Radar Es-

tablishment at Malvern, England. RSRE (which is a research station belonging

to the British Ministry of Defence) has been developing formal methods of spec-

ifying and analysing software for some 15 years, but only in 1983 did we begin

to look at the equally challenging problem of computer hardware.

Correctness of computer hardware has only become an issue because of the

pressure from computer users (civil and military) to put programmable elec-

tronics into ever more critical systems. The medical, automotive, and avionic

communities now all use general purpose microprocessors in systems which could

place the lives of their customers at risk, and the threshold is constantly being

pushed higher: computer control o�ers so many advantages in cost, perfor-

mance, and exibility that its temptations are rarely resistible.

Conventional microprocessor chips, however, are neither well enough spec-

i�ed nor accurately enough implemented for life-critical (or security-critical)

applications. Every month sees another press report of problems in widely-used

devices. VIPER, like the FM8501 and 8502, was born of the need for a micro-

processor with a precise, formal, speci�cation, the highest possible assurance

that the physical device conforms to it, and the special characteristics needed

for high-integrity applications.

Computational Logic Incorporated were commissioned by NASA to review

the work on VIPER, under a long-standing framework for collaboration in

aerospace research between NASA and the Royal Aerospace Establishment in

Britain. Information on VIPER was supplied by ourselves and by Marconi

Electronic Devices Ltd.

i
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The VIPER Design and Veri�cation Process

VIPER was developed in response to a number of UK military requirements. We

made an early decision (in 1984) to fabricate chips as a demonstration of what

could be done, and therefore limited ourselves to technologies which o�ered a

reasonably quick route to silicon. Gordon's LCF-LSM system (which has now

matured into HOL, see the references at the end of the report) was the obvious

choice, since a full account of it had been published with a tutorial example of

hardware veri�cation - a simple 8-bit machine now called \Tamarack."

HOL is syntactically quite similar to the hardware description language

ELLA, so we decided to live with an informal (though technically easy) step

in the design process by changing languages in the middle. A strongly-typed

language like HOL is a big help when writing a speci�cation (it detects a large

proportion of errors) and a theorem prover for it is available. ELLA is an es-

tablished HDL with a wealth of tools, some of which can re�ne a block-level

description into a gate-level design with almost no human intervention. We

changed at the point of least e�ort; the process could easily be mechanised

though for a device as simple as VIPER this did not seem worth while.

From the language change downwards, the VIPER design was �rst veri�ed

by a process of \intelligent exhaustive simulation" whose coverage depends on

the set of test vectors applied. These vectors (which contain \don't cares" in

profusion) are generated by the ELLA simulator from a hand-written program.

Though we believe this method to be sound (it is in fact pessimistic: it rejects

some correct circuits but should never accept a wrong one) it depends too much

on human assiduity for comfort, so we have replaced it. The new technique,

developed by Clive Pygott at RSRE and based on the work of R. E. Bryant, is

called NODEN; it was used in August 1989 to repeat the low-level veri�cation

of the latest version of VIPER. This device (VIPER 1A) is designed to operate

in pairs and has built-in comparators to check for address and data bus errors.

The comparators have too many inputs for the NODEN analyser to check them,

but the rest of the design was con�rmed to be correct.

The upper levels of the veri�cation were done by Avra Cohn at the University

of Cambridge, England, using the HOL Theorem Prover. The proof is not

complete in a number of areas concerning the meaning of computer arithmetic;

these points have been documented by Cohn herself and are commented on

further in this report. We are con�dent from careful (but informal) argument,

simulation, and testing of actual chips that the implementation is correct, but

as Fetzer and others have pointed out it is not justi�ed in strictly mathematical

terms to claim a \proof" of any physical device.

Hardware, of any kind, is fundamentally di�erent from computer software in

that a truly formal proof (a \demonstration" in Fetzer's terms) of correctness

is not possible. Physical devices wear out and break down, and no amount of

formal logic can guarantee immunity: ultimately physics makes its own rules.

With VIPER we have put almost as much e�ort into guarding against hard-
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ware breakdown (using parity bits, master/slave operation, built-in test, and

self-testable logic) as into assuring correctness of the design. The two aspects

are of course complementary, for most redundant systems are built round the as-

sumption that the channels will fail independently. If there is a common design

fault, they may all fail together.

The Future

This report and Avra Cohn's work con�rm our impression that more remains

to be done, both to build up con�dence in the existing VIPER design and to

develop new techniques of design and veri�cation which avoid the limitations

of present methods. CLI themselves are major contributors to this �eld; in the

UK we are sponsoring work on methods of re�ning a functional speci�cation by

correctness preserving transformations, so that the eventual gate-level design is

\correct by construction." The �rst test vehicle for this work will probably be

a much faster (but upwards compatible) development of VIPER.

At the silicon level, we are insuring against faults in the CAD software

and manufacturing process (which are below the end-point of our veri�cation

work) by sponsoring a second, independent, gate-level design of the chip using

a di�erent technology.

In the longer term we feel that a combination of methods will usually be

needed to achieve the highest assurance. A design may be pronounced \correct

by construction" by a faulty software tool; to guard against this a separate

proof of implication could be carried out using di�erent tools. At the level of

electrons and transistors formal logic is not very helpful, and the best safeguard

is to repeat the design process in as di�erent a way as possible. Interchange

and co-operation between the various research teams is vitally important, and

we hope to build on the knowledge we have gained from CLI and NASA to

strengthen our own work and to provide secure foundations for VIPER and its

descendants.

RSRE Malvern, UK John Kershaw

Email: KERSHAW@HERMES.MOD.UK



Contents

Foreword i

1 Introduction 1

2 The VIPER Microprocessor 4

3 Formal Speci�cation 6

3.1 The Top Level : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

3.1.1 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

3.1.2 Arithmetic Speci�cations : : : : : : : : : : : : : : : : : : 8

3.2 The Major-State Machine : : : : : : : : : : : : : : : : : : : : : : 9

3.3 The Block-Level Speci�cation : : : : : : : : : : : : : : : : : : : : 10

3.4 The Implementation-Level Speci�cation : : : : : : : : : : : : : : 11

3.5 Speci�cation Summary : : : : : : : : : : : : : : : : : : : : : : : : 12

4 Proofs and Proof Attempts 13

4.1 Block () Implementation : : : : : : : : : : : : : : : : : : : : : 13

4.1.1 Intelligent Exhaustion Technique : : : : : : : : : : : : : : 14

4.1.2 Application to VIPER : : : : : : : : : : : : : : : : : : : : 15

4.1.3 Interface to Higher Levels : : : : : : : : : : : : : : : : : : 16

4.1.4 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

4.2 Top () Major-State (LCF LSM) : : : : : : : : : : : : : : : : : 17

4.3 Top () Major-State (HOL) : : : : : : : : : : : : : : : : : : : : 17

4.4 Top () Block : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

4.5 Proof Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

5 Conclusion 21

iv



Chapter 1

Introduction

VIPER (Veri�able Integrated Processor for Enhanced Reliability) is a 32-bit

microprocessor architecture designed by the Royal Signals and Radar Estab-

lishment (RSRE) in Malvern, England [Ker84]. Recent technical and marketing

literature includes the following statements:

. . . formal mathematical methods have been used both to specify the

overall behaviour of the processor and to prove that the gate-level

realisations conform to this top-level speci�cation. [CP87]

[Formal methods] were used in the development of VIPER, the �rst

commercially available microprocessor with a formal speci�cation

and a proof that the chip conforms to it. [Dyk88]

The purpose of this report is to examine the claim that the gate-level design

of the VIPER microprocessor is mathematically veri�ed. The sources for our

study of VIPER included a number of technical documents from RSRE and

Cambridge University. Additionally, in April, 1989, we personally interviewed

the VIPER design team and their Cambridge University veri�cation consultants.

Although a great deal of e�ort has been expended on the formal speci�cation

and veri�cation of VIPER, there is not su�cient evidence to substantiate the

claim that the VIPER gate-level speci�cation (the implementation netlist) has

been proven to implement its top-level speci�cation (the instruction interpreter).

This is not a unique point of view; a recent paper by one of the Cambridge

University consultants arrives at a similar conclusion [Coh89b].

Chapter 2 contains an informal description of the VIPER microprocessor.

The analysis of VIPER begins in Chapter 3 with an outline of the abstract lay-

ers used to specify VIPER. Chapter 4 covers each of the proofs, and attempted

proofs of correspondence between the levels in the speci�cation. A schematic

block diagram of the contents of Chapters 3 and 4 appears as Figure 1.1. The

conclusion contains a discussion of some of the broader issues in managing for-

mal hardware veri�cation projects, using the VIPER project as an example.

1
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Throughout the report we contrast the speci�cation and veri�cation approach

used for VIPER with that used during the speci�cation and veri�cation of the

FM8502 microprocessor [War87].
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Figure 1.1: A schematic representation of the speci�cation and veri�cation of

VIPER.



Chapter 2

The VIPER

Microprocessor

The VIPER project was launched after the British Ministry of Defence became

increasingly concerned that computer hardware and software errors had caused

and would continue to cause loss of life. It was believed that the formal speci-

�cation and veri�cation of a microprocessor would yield an embedded-systems

platform whose operational characteristics were completely known. Some other

goals of the VIPER project, besides those stated in the VIPER design docu-

ments [Ker84], are listed below.

Design Stability. Di�erent revisions of supposedly identical processors have

been found to behave di�erently even though these processors bear the

same part number. These di�erences are often the result of iterating

a design as the processor implementation technology matures. To avoid

this problem, VIPER implementations were to be veri�ed before they were

produced, thus insuring all VIPER implementations would have identical

functionality.

Safety Critical Architecture. The VIPER architecture is straightforward

and simple. A simple architecture is easier to specify, verify, and use

correctly. To enhance the VIPER's use in safety-critical computing, the

VIPER designers added features which force the processor to halt under

various conditions. The VIPER enters a halt state whenever an unimple-

mented instruction is encountered, when the memory does not respond

within a �xed amount of time, an unexpected arithmetic overow is de-

tected, etc.

4
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Reliable Systems. Formal veri�cation is not insurance against physical fail-

ures. The VIPER1A, a successor to the VIPER1, includes additional cir-

cuitry which allows two processors to be operated as a self-checking pair

[Pyg87,HP87]. If the computations of the two processors ever diverge,

then both processors will halt.

The above list points out the great success MOD has achieved with the VIPER

project. They have implemented a safety-conscious architecture, and developed

dual-processor systems capability which should provide enhanced reliability.

An informal, architectural-level speci�cation for VIPER appears in [Ker84].

VIPER is a 32-bit machine with an accumulator, two index registers, a 20-bit

program counter, and a 1-bit ag register. The processor supports word ad-

dressing of separate, 220 word I/O and memory spaces. Each 32-bit instruction

consists of a 12-bit opcode and a 20-bit literal value or memory address. As

mentioned above, VIPER is designed to stop whenever an error is encountered

during processing. The fact that the processor has halted due to an error is

detectable by means of a dedicated output. The VIPER architecture does not

provide interrupts or other kinds of exceptions except as noted above.



Chapter 3

Formal Speci�cation

The formal speci�cation of VIPER is divided into four abstract levels, summa-

rized in Table 3.1. Starting from the top-level speci�cation (most abstract),

each level becomes more and more concrete until a gate-level description (least

abstract) is reached. Partitioning the speci�cation this way was inspired by

Gordon's speci�cation and veri�cation of a simple 12-bit processor modeled in

LCF LSM [Gor81,Gor83]. Table 3.1 only lists the speci�cations published by

RSRE. For some of the proofs the LCF LSM speci�cations were recast into the

derivative language HOL [Gor87] by consultants at Cambridge University. In

the following Sections we focus on the original versions and treat the HOL trans-

lations along with the proofs in Chapter 4. The speci�cation style used in the

LCF LSM speci�cations is not signi�cantly altered by translation to HOL. It

is also instructive to examine some of the de�ciencies in the original LCF LSM

speci�cations, not all of which are solved in their HOL counterparts.

The VIPER Speci�cation

Level Language(s) Reference

Top LCF LSM [Cul85]

Major State LCF LSM [Cul86]

Block LCF LSM, Drawing; ELLA [Pyg86]

Implementation ELLA; HILO, FDL N/A

Table 3.1: Levels in the VIPER Speci�cation, in decreasing order of abstraction.

6
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3.1 The Top Level

3.1.1 Overview

At the top level, VIPER was speci�ed as a function in LCF LSM named NEXT.

Below we provide a schematic view of the operation of the function.

NEXT (ram,p,a,x,y,b,stop) -> (ram,p,a,x,y,b,stop)

NEXT takes the current programmer (visible) state (of seven components) and

computes a new (seven component) programmer state based on the instruc-

tion referenced by the program counter. The programmer state consists of the

registers a, x, and y, the program counter p, the multi-purpose ag b, the

\processor-stopped" ag stop, and the data and I/O memory space ram. NEXT

is an interpreter for a single instruction, which an assembly language program-

mer could use to predict the changes to the programmer state on the execution

of one instruction. This is similar to the speci�cation function for the FM8502,

except that the FM8502 speci�cation is an instruction interpreter for a processor

executing a sequence of instructions.

Due to the very abstract nature of the top-level speci�cation for VIPER,

a number of the safety-critical features of the architecture do not appear. For

example, the NEXT speci�cation includes the stop ag, but the top-level speci�-

cation function does not address all of the ways that real VIPER processors can

be forced to halt, e.g., through a memory timeout. Instead, NEXT implicitly as-

sumes a con�guration in which the RESET, SINGLE-STEP, and ERROR inputs

to the physical processor are never asserted, and all memory accesses complete

normally. These assumptions are made explicit in the attempts to prove that

the block-level implementation (Section 3.3) correctly implements the top-level

speci�cation. Since the top-level speci�cation makes no account of any inputs

to the system, the speci�cation does not really model I/O, even though the

I/O memory space is included in NEXT. In summary, when considering what

has been proved about VIPER with respect to the high-level speci�cation, one

should realize that this speci�cation does not cover every behavior, including

several important safety-critical behaviors.

These de�ciencies were known to RSRE, but addressing them would have

required a radically di�erent speci�cation approach. Modeling memory timeout,

for example, would have necessitated some notion of time in the high-level spec-

i�cation, as well as a nondeterministic input to model memory acknowledgment.

At the time RSRE scientists began the work they did not feel con�dent in ex-

tending the speci�cation methodology past the simple state-transition technique

which was employed [Cul].

We do not mean to suggest that these are trivial problems; the formalization

of peripheral behavior is an active area of research in hardware veri�cation. For

example, the FM8502 speci�cation employs the notion of an oracle, a parameter
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ADD32(r,m)

==

LET sum = WORD34((VAL33(SIGNEXT r)) + (VAL33(SIGNEXT m))) IN

LET opposite = (EL 31 (BITS32 r)) XOR (EL 31 (BITS32 m)) IN

(TRIM34TO32 sum, {sum}

(EL 32 (BITS34 sum)) XOR opposite, {carry}

((EL 32 (BITS34 sum)) XOR ((EL 31 (BITS34 sum))))) {overflow}

Figure 3.1: Top-level speci�cation of addition with carry and overow for the

VIPER microprocessor.

to the low-level speci�cation function which models the nondeterministic occur-

rence of RESET events and memory acknowledgments. The oracle abstraction

made it possible to formally state and prove that the FM8502 implementation

conforms to the top-level speci�cation in the face of arbitrary delays from the

memory. Another proof connected the programmer's view of resetting the ma-

chine with the hardware-level reset.

3.1.2 Arithmetic Speci�cations

The arithmetic behavior of VIPER is described in terms of operations on natural

number abstractions of Boolean words. Interpreting these speci�cations is com-

plicated by the fact that two equivalent representations are used for Boolean

words in LCF LSM and HOL: the built-in types wordn, and lists of Boolean

values. The top-level speci�cation for addition in the ALU is presented in Fig-

ure 3.1. Hardware addition is de�ned as sign-extending 32-bit words to 33

bits (which involves an intermediate Boolean list), converting 33-bit words to

numbers, adding the numbers, converting the sum to a 34-bit word, and then

truncating this word to 32 bits. Computation of the carry and overow are done

with list forms of some of the intermediate results.

The sum computed by ADD32 is a fairly straightforward de�nition of hard-

ware addition, although the sign-extension of the addends is never explained.1

More signi�cant is the fact that nowhere in the formal work on VIPER is it

ever demonstrated that ADD32 is an abstraction for either signed or unsigned

addition, nor is there ever any formal description of the signi�cance of the carry

and overflow outputs of ADD32. Whereas the informal speci�cation states that

\. . .overow on either addition or subtraction causes the VIPER processor to

stop . . ." [Ker84], a statement about signed arithmetic, the formal speci�cation

never mentions signed numbers.2 Thus the top-level speci�cation leaves too

1An unconvincing justi�cation appears in the speci�cation [Cul85]. At the block level
(Section 3.3), addition is de�ned by truncating the 33-bit result of a 32-bit addition.

2Signed integers are not a built-in type in LCF LSM. They could have been modeled, for
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much unspeci�ed about the arithmetic operation of the processor. This does

not mean that the top-level speci�cation is wrong, simply that it is currently

unable to support formal arithmetic analysis at any level higher than uninter-

preted operations on Boolean words.

An example will clarify the above points. Imagine that a programmer had

written a VIPER program whose abstract speci�cation was to compute the sum

of two signed integers. The programmer would like to prove the following:

If a, b, and c are 32-bit words in the VIPER system, and if an

instruction is executed such that NEXT places the sum output of

ADD32(a,b) into c, and if the overflow output of ADD32(a,b) is

not set, and if a, b, and c are the respective integer abstractions of

a, b and c as 32-bit, 2's complement words, then c = a + b.

The programmer would further want to know that overow is set only if a+ b is

an integer which can not represented as a 32-bit, 2's complement word. The top-

level speci�cation of VIPER does not give the programmer the necessary tools to

carry out this proof: no abstraction function from Boolean words to integers is

provided, the result returned by ADD32 has no abstract interpretation as either a

signed or unsigned integer, and there is no formal de�nition of \representability"

by which to judge the correctness of the overow bit.

In contrast, the speci�cation of the FM8502 provides a complete founda-

tion for higher-level proofs. This was accomplished by proving a number of

theorems relating the hardware operations of the FM8502 to abstract functions

de�ning natural number and integer arithmetic. The complete speci�cation

of the FM8502 enabled the development of a formally veri�ed system which

includes a veri�ed assembler and veri�ed compiler [Moo88,You88].

3.2 The Major-State Machine

The next lower level of abstraction in the VIPER speci�cation is the major-

state machine. The major-state level abstracts VIPER as a cyclic graph whose

nodes represent di�erent phases of instruction execution, e.g., instruction-fetch,

perform-ALU-operation, or read-memory. Each node in the major-state graph

is modeled by an LCF LSM function that speci�es how the programmer state

and internal state variables change as VIPER passes through the phases of

instruction processing. The only concept of time at this level is the implicit

ordering of the state transitions.

As speci�ed by RSRE, the major state machine is not a single function in

LCF LSM, but rather a collection of functions with only an informal connection.

In other words, RSRE's major-state speci�cation cannot be used as a simulator

for VIPER in the same way that the top-level speci�cation can. Recasting the

example, as a sign/magnitude pair.
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speci�cation into HOL for purposes of formal proof (Section 4.3) necessitated

the introduction of a new formal framework which is not present in the original

speci�cation, i.e., a framework which connects the individual state functions

into a single function. Both the LCF LSM and HOL versions continue to ignore

external reset,3 stop on external error, and memory timeout.

The major-state level was an attempt to bridge the gap between the high-

level and low-level speci�cations, in order to simplify the formal correspondence

proofs. Although two proofs (described in Chapter 4) involve this speci�cation

level, neither factors into the �nal correctness argument for VIPER hardware.

We also point out in Section 4.3 that the original LCF LSM speci�cation was

incorrect, in the sense that it was not equivalent to the top-level speci�cation.

There is no equivalent of the major-state level in the FM8502 speci�cation.

3.3 The Block-Level Speci�cation

A block is an abstract description of a major subsystem of the processor, e.g., the

register �le, instruction decoder, the ALU, etc. Each block has three equivalent

speci�cations: RSRE's published LCF LSM version, the HOL translation of the

LCF LSM used for formal proofs (Section 4.4), and an unpublished counterpart

in the ELLA [MPT84] simulation language used for Intelligent Exhaustion sim-

ulation (Section 4.1). The block-level speci�cation utilizes a register-transfer

representation for sequential hardware. All of the registers are assumed to be

activated by a common clock, and the block-level speci�cation functions specify

the behavior of the combinational logic. The latches never appear explicitly in

the LCF LSM or HOL versions. Instead, registers are modeled as parameters of

the block-level functions. Whether an input argument or computed value is to

be implemented as a latch is only informally speci�ed by means of text and draw-

ings. Latches are explicitly represented in the ELLA descriptions. In contrast,

the FM8502 speci�cation utilized a stylized hardware description methodology

which makes apparent which parameters represent sequential state.

As with the major-state model, RSRE's LCF LSM speci�cation is partial;

there is no formal description of the complete VIPER processor at the block

level. This is a serious aw, since an indispensable component of the original

speci�cation of VIPER is a schematic drawing that indicates the intended inter-

connection of the blocks. Connecting the block-level models to create a usable

formal speci�cation in HOL was a major hurdle in the high-level proof attempt

(Section 4.4). The translation from LCF LSM to HOL also uncovered a number

of syntactic and typographical errors in the LCF LSM speci�cations [Coh89a].

The block-level speci�cation is also awed by the need for the co-speci�cation

in ELLA. RSRE felt that it would have been prohibitively complicated to at-

tempt gate-level veri�cation against the block model using LCF LSM [CP87],

3The speci�cation does include a RESET state, but since external events are not modeled
there is no way to enter that state.



The Formal Speci�cation and Partial Veri�cation of VIPER

Technical Report #46

11

and originally speci�ed the block-level machine in ELLA. We comment further

on the problems of the dual speci�cation in Section 4.1.3.

3.4 The Implementation-Level Speci�cation

The implementation-level speci�cations were produced by Marconi Electronic

Devices, Ltd. and Plessey Company plc. The VIPER implementations were

created from the block-level descriptions of VIPER. Two descriptions of each

implementation actually exist: the circuit netlist in a proprietary CAD lan-

guage, and translations of the netlists into ELLA which were used during Intel-

ligent Exhaustion simulation (Section 4.1.1). The gate-level speci�cations are

considered proprietary information, and are not publicly available.

The transfer from a formal speci�cation language into an informal one, such

as a hardware design language, is a weak link in the formal hardware veri�-

cation process. The RSRE speci�cation of VIPER is further weakened by the

necessity of two informal translations: the translation of the gate-level models

from proprietary languages to ELLA, and the translation of the ELLA descrip-

tions of the block model to LCF LSM and HOL. It is not possible to prove the

correctness of either translation due to the lack of a formal theory relating the

di�erent languages.

In contrast, the low-level speci�cation of the FM8502 can be viewed as a

gate-level speci�cation, in the sense that the speci�cation can be formally ex-

panded down to simple functions abstracting gates and registers. Although it

has not been done, it would be possible to translate this formal expansion into

a commercial CAD language in a single informal step. No special-purpose inter-

mediate language was needed for the FM8502 veri�cation because of the power

of the Boyer-Moore theorem prover in dealing with induction, and the built-in

Boolean decision procedure which simpli�ed low-level proofs.
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3.5 Speci�cation Summary

The formal speci�cation of VIPER is partitioned into four levels of abstraction.

At the highest level, RSRE described VIPER with decreasingly abstract sets of

functions in LCF LSM. At the lowest level of abstraction are the gate-level mod-

els in proprietary CAD languages. The block-level and gate-level speci�cations

are also given in the ELLA simulation language.

We noted several de�ciencies in RSRE's speci�cations:

� There is no notion of external events in the top-level speci�cation. Many

of the safety-critical design features, such as externally forced error resets

and memory timeouts, cannot be considered at this level.

� The top-level speci�cation is incomplete with regard to the arithmetic

operations which VIPER is said to provide. It impossible to use the top-

level speci�cation to prove abstract properties of programs running on

VIPER computers.

� There is no complete formal description of the block-level machine (al-

though Cohn later created one). The RSRE block-level speci�cation only

describes individual blocks; blocks are related to each other by informal

text and drawings. The style used in the block-level speci�cation was

apparently geared toward low-level veri�cation, without consideration for

how it would be used in proofs at higher levels.

� There is no formal connection between the LCF LSM and ELLA block-

level speci�cations.



Chapter 4

Proofs and Proof Attempts

The VIPER veri�cation e�ort includes proofs by two diverse groups over a

three year period. The �rst proofs were carried out by RSRE without me-

chanical assistance. Later, Avra Cohn of Cambridge University was engaged to

perform mechanical proofs using the HOL theorem prover. RSRE planned to

verify VIPER in several steps, which when composed would constitute a formal

veri�cation of the processor. Three proof steps were to link the four abstract

speci�cation layers: Top () Major State, Major State () Block, and

Block () Implementation. A complete HOL proof linking Top () Major-

State was produced by Cohn. No HOL proof was attempted for the Ma-

jor State () Block correspondence; instead, an HOL proof of Top () Block

was attempted but never completed. There is no formal proof relating the block-

level speci�cation to the implementation, only an incomplete argument based

on Intelligent Exhaustion simulation.

A briey annotated, chronological list of the proofs and proof attempts can

be found in Table 4.1. We discuss the nature and status of these proofs and

proof attempts in the sections which follow. We follow the chronology, beginning

at the implementation level and ending at the top level.

4.1 Block () Implementation

The �rst analyses of the VIPER speci�cation were designed to show that the

gate-level implementations proposed by the manufacturers correctly implemented

the block-level speci�cations. Since the block-level speci�cations only deal with

the combinational behavior of the blocks, this correspondence could have been

demonstrated by exhaustive simulation. RSRE introduced a method called In-

telligent Exhaustion (henceforth IE) which attempts to deliver the certainty of

exhaustive simulation without explicit simulation of every possible input pat-

tern. The remainder of this Section consists of an introduction to the IE tech-

13
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VIPER Proof E�orts

Levels Ref. Notes

Block () Implementation [Pyg85] ELLA speci�cations were

analyzed by Intelligent Ex-

haustion simulation. The

reference is to the method;

the analyses are not docu-

mented.

Top () Major State [CP85,Cul86] A hand proof, later invali-

dated. The �rst reference

is to the method, the sec-

ond documents the proof at-

tempt.

Top () Major State [Coh87] A machine-checked proof,

using HOL versions of the

(corrected) speci�cations.

Top () Block [Coh89a] A formal analysis in HOL;

not a �nished proof.

Table 4.1: Analyses of the VIPER speci�cation, in chronological order.

nique, followed by a discussion of the application of IE to the VIPER veri�cation

and the problems with connecting the low-level proofs to the higher levels. Al-

though the low-level speci�cations were extensively analyzed, this analysis does

not constitute a formal proof of the Block () Implementation correspon-

dence.

4.1.1 Intelligent Exhaustion Technique

Intelligent Exhaustion (IE) is a veri�cation methodology which could be im-

plemented in a number of high-level digital simulation systems. IE veri�cation

involves the simulation of one or more special purpose circuits encoded in a

behavioral simulation language. In brief, gate-level and behavioral models of

the circuit are simultaneously simulated, and the outputs of the two models are

compared by a device which is also encoded in the simulation language.

If the behavioral and gate-level models agree on all possible inputs, then the

two models are identical, although in general this would require the simulation of

an exponential number of tests. IE exploits the fact that the values of functions

are often determined by a proper subset of their input values. For example

the output of a hardware AND gate will be low if one of the inputs is low;

the value of the other input is irrelevant in that case. Irrelevant signal values

can be modeled with unknown or indeterminate states, which are well-known
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abstractions for digital logic simulation [BF76]. Since simulating a circuit with

an indeterminate input is equivalent to simulating both high and low values for

that input, intelligent analysis by the engineer can reduce the number of input

patterns required to completely test the functionality of a combinational circuit.

As long as it can be shown that every possible input has been considered, then

IE is equivalent to exhaustive simulation. This condition is easy to check; for

example a simple program can verify that a set of n-bit vectors which include

indeterminate states actually covers all 2n possibilities.

In practice, however, IE analyses are more complicated than suggested by

the preceding paragraph. For example, if a device has several loosely correlated

outputs, the most e�cient veri�cation may require a separate IE simulation for

each output. Therefore it may also need to be shown that the IE simulations

cover every output. This is not as straightforward as checking input coverage,

since complete output coverage can only be determined by a careful examination

of the behavioral source code. Another complication is that the behavior of a

combinational circuit may only be speci�ed for a subset of all possible inputs.

For these cases it only needs to be shown that the inputs cover all interesting

behavior. This requires a careful statement of exactly what the interesting cases

are, and a corresponding proof that all of these cases have been considered.

Arithmetic circuits, like adders, also cause problems. For example, the IE

veri�cation of the carry output of an n-bit adder requires the simulation of

O(2n+2) patterns. While IE may provide economical veri�cation of some types

of circuits, it seems that the application of the method to arithmetic circuits

will always be limited to relatively small devices; the combinatorial explosion is

inescapable. RSRE also discovered cases where IE is too pessimistic, and would

lead one to believe that correct circuits are incorrect [Pyg88].

4.1.2 Application to VIPER

RSRE implemented IE in the ELLA simulator, in part because the ELLA system

had interfaces to the proprietary CAD systems used in the actual fabrication

of VIPER. The block-level speci�cation of VIPER was originally developed in

ELLA, whereas the manufacturers provided gate-level realizations of the block-

level designs in the proprietary CAD languages HILO and FDL. These gate-

level designs were automatically translated to ELLA for IE simulation. The

IE simulations uncovered errors in the initial designs \that would have been

virtually impossible to �nd by simulation" [Pyg85].

The low-level veri�cation of VIPER by Intelligent Exhaustion remains in-

complete, however, for two important reasons. Most importantly, RSRE never

proved that the input patterns used for IE simulation provided complete cover-

age of every possible case [Pyg]. The complete IE analysis of VIPER required

the development and simulation of more than 6000 patterns [Pyg85]. There

is no proof that these 6000 test patterns completely exercise the block-level

speci�cations.
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There is also no formalized argument that the implementations of the VIPER

ALU meet the block-level speci�cation. Recall that IE does not mitigate the

combinatorial nature of veri�cation of arithmetic circuits. In particular, IE sim-

ulation could not be performed on the entire 32-bit ALU. Instead, the ALU was

partitioned into 8, 4-bit slices and associated \glue" logic for carry-lookahead.

IE was only used to show that the 4-bit slices were correct; the correctness

of the complete ALU is only supported by traditional engineering arguments.

Since the later proof which begins at the block level (see Section 4.4) assumes a

complete, 32-bit ALU, there remains an unveri�ed gap between the block-level

ALU speci�cation, and the subcircuits that were analyzed with IE.

4.1.3 Interface to Higher Levels

Veri�cation of the electronic block model of VIPER is not an end in itself, but

has to be considered as a part of the overall veri�cation e�ort. The block-level

speci�cation exists in two forms: the LCF LSM which forms the basis for high-

level veri�cation, and the co-speci�cation in ELLA. The LCF LSM version was

created by hand-translating ELLA to LCF LSM. ELLA is not an LCF LSM

simulator; a number of subtle di�erences between the two representations are

documented in [Pyg85]. For example the ELLA speci�cation employs data

types not available in LCF LSM. There are also a number of rami�cations of the

presence of indeterminate states in ELLA with respect to interpreting LCF LSM

speci�cations.

The use of di�erent languages in a veri�cation e�ort increases the chance

of errors, either in the translation process, or errors caused by di�erences in

the semantics of the languages. In the case of VIPER, conjectures veri�ed by

IE simulation of the ELLA models are used as axioms in the high-level proofs

based on the LCF LSM versions of the speci�cation, in spite of the fact that

there is no formal connection between the two languages.

In the case of the formal systems built on the FM8502, a uniform logical

theory (the Boyer-Moore logic) was used from the gate-level descriptions all the

way up to the speci�cation of a high-level programming language. All of the

correctness proofs were checked with the Boyer-Moore theorem prover, which

ensures that all of the proof obligations have been discharged.

4.1.4 Summary

We are not convinced that RSRE researchers have formally veri�ed the gate-

level implementation of VIPER. It was never veri�ed that the IE test patterns

provided complete coverage, and there is no proof that the complete ALU de-

signs are correct. Even if the IE analysis of VIPER were to be completed there

still remains the gap between the LCF LSM and ELLA speci�cations, bridged

only by informal arguments. The VIPER veri�cation would be much more be-

lievable and satisfying if a uniform theory had been used at every level, and if
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RSRE had completed all of the proof obligations of the methodology in use.

4.2 Top () Major-State (LCF LSM)

Cullyer reported a proof, worked by hand, which showed that the major-state

machine correctly implements the top-level VIPER speci�cation. This proof

attempt was carried out completely within the LCF LSM framework, as Cullyer

used the LCF LSM speci�cations. Cohn later demonstrated that the major-

state speci�cation was wrong, thus invalidating this work (see Section 4.3).

This failed attempt is important if for no other reason than to demonstrate the

desirability of mechanically checked proofs.

4.3 Top () Major-State (HOL)

Desiring machine-checked, formal proofs of correctness, and feeling that it lacked

the requisite experience in-house, RSRE contracted the Hardware Veri�cation

group at Cambridge University to produce high-level proofs of correctness for

VIPER. The �rst proof, which showed the correspondence between the top-

level speci�cation and the major-state machine, was published in 1987 [Coh87].

Cohn reported that this proof required six months to complete, and involved

over one million primitive inferences. Due to a change of plans (see Section 4.4)

this proof is only of historical interest, and does not play any role in the formal

correctness argument for VIPER.

Cohn began by translating the LCF LSM speci�cations into the higher-order

logic HOL [Gor87]. Since HOL was derived from LCF LSM, the translation

of the top-level and major-state speci�cation from LCF LSM into HOL was

straightforward. The proof of equivalence also required Cohn to augment the

original speci�cations in two respects. Recall that the major-state machine was

modeled as a set of functions representing di�erent phases of instruction ex-

ecution, without any formal connection between the states. Cohn formalized

the connection by combining all of the state transition functions into a single

function. Cohn also formalized a notion of time, where each unit of time rep-

resented one transition in the major-state machine. Again, proofs at this level

ignore the possibility of reset and memory timeout since these eventualities are

not represented in the speci�cations.

Several blatant errors in the LCF LSM major-state machine speci�cation

were uncovered during the proof. During the fetch cycle, for example, the check

for illegal instructions was speci�ed to be made against the previous contents

of the instruction register, not against the instruction just fetched. Since the

major-state machine was an abstraction created for proof, and not an integral

part of the design, these errors are not manifested in the actual devices.
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4.4 Top () Block

Cohn next considered the veri�cation of the major-state machine with respect

to the block-level speci�cation. This approach was abandoned for technical

reasons. Instead, Cohn attempted to prove the correspondence of the block-level

speci�cation with respect to the top-level speci�cation directly. This e�ort did

not result in a �nished proof that the block-level machine correctly implements

the VIPER top-level speci�cation.

Cohn's �rst challenge was to convert the block-level speci�cation into a form

that was amenable to formal analysis. Recall from Section 3.3 that the block-

level speci�cation consists of a set of LCF LSM functions, schematic drawings,

and text. Using these sources Cohn created an HOL function which is believed

to faithfully capture the intention of the VIPER designers for the block-level

machine. This function is more complex than the VIPER major-state speci�ca-

tion, as each major state is further divided into a number of minor states. The

HOL block-level speci�cation function was then expanded, using de�nitions and

simpli�cation lemmas, to produce what is essentially a symbolic execution of

the block-level machine for each possible VIPER instruction schema. Cohn also

proved that the expansion did cover every instruction schema.

To �nish the proof, it would be necessary to prove that the results computed

by the block-level speci�cation match the top-level speci�cation. Paraphrasing

Cohn, this step was not taken because

1. Resources were limited, and the research results would not justify the

e�ort.

2. No one had developed an HOL theory of bit-string operations, which is

critical for completing the proof.

3. Relating the high-level results to the block-level results might require in-

tricate knowledge of the design to understand exactly how the low-level

design implements the speci�cation.
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Top:

WORDS32

(V

(TL

(TL

(BITS34

(WORDS34

((VAL33 (SIGNEXT (REGSELECT_ABBR(areg,xreg,yreg,preg,ram)))) +

(VAL33 (SIGNEXT (MEM_ABBR(ram,preg))))))))))

Block:

WORDS32

(V

(SEG

(0,31)

(BITS33

(WORD33

((VAL32 (REGSELECT_ABBR(areg,xreg,yreg,preg,ram))) +

(VAL32 (MEM_ABBR(ram,preg))))))))

Figure 4.1: Derived computations for an ADD operation for the VIPER top-

level and block-level speci�cations.

Instead, Cohn delivered the symbolic expansion to the VIPER design team,

who informally analyzed it and found no obvious errors. Quoting from [Coh89a]

(the italics are Cohn's):

For the non-ALU sequences, the results are not very complicated

and they appear to be as intended. Some of the arithmetic-logic

paths are also apparently correct. Others, in particular the addi-

tions, subtractions, and comparisons, are neither obviously correct

nor incorrect, and require further study. So far, there do not seem

to be any de�nitely incorrect results, but obviously, since the formal

analysis ends at this point, there very well could be. For that reason,

a great deal of care should be taken in describing the Viper block

model as being `veri�ed'; it has to date only been analyzed . . . and

inspected . . .

Cohn goes on to give examples of the types of obstacles remaining. For ex-

ample, Figure 4.1 displays the result computed by the ALU during an addition,

�rst from the top-level speci�cation, then from the block-level speci�cation. The

informal argument is simple: both expressions compute the low-order 32 bits

from addition of two 32-bit words. In the expression from the top level, the
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result is obtained by truncating the 34-bit result of a sign-extended addition; at

the block level, a 33-bit value is truncated. This is an example where it is fairly

\obvious" that the two levels compute the same value. Cohn also gives other

examples in which the correspondence between levels is far less clear. Unfortu-

nately, the lemmas about bit-vector operations that were needed to prove the

correspondence were never developed.

The status of this proof attempt is unchanged since the publication of

[Coh89a]. There is no indication that this proof will ever be completed.

4.5 Proof Summary

Several attempts were made to prove correspondence between the various levels

in the VIPER speci�cation. These e�orts were undertaken by RSRE and re-

searchers at Cambridge University over a three-year period. So far there is no

complete proof that the gate-level speci�cations implements the top-level speci-

�cations. RSRE used Intelligent Exhaustion simulation to analyze the gate-level

implementations. The most satisfying formal work on VIPER is Cohn's proof

that the major-state machine correctly implements the top-level speci�cation.

Unfortunately, this proof has no formal connection with any of the other proof

attempts, except that the same HOL top-level speci�cation was used for the

Top () Block analysis. The �nal attempt to prove that the block-level

model is equivalent to the top-level speci�cation was prematurely terminated,

but carried to the point that the results are at least plausibly correct. None of

these e�orts address resetting the machine, memory timeout, forced error, or

single step modes.

A satisfactory completion of this work would require at least:

� The adoption of a more rigorous framework for gate-level veri�cation than

that provided by Intelligent Exhaustion.

� A formal proof that the gate-level ALU, which was partitioned in order

to be analyzed by Intelligent Exhaustion, correctly implements the block

level speci�cation.

� The completion of Cohn's Block Level () Top Level proof.

� The speci�cation of integers, along with integer operation appearing in

the top-level speci�cation.

Until these conditions are met, the claims that VIPER has been formally veri�ed

are unfounded.



Chapter 5

Conclusion

VIPER has been veri�ed in the traditional hardware engineering sense, i.e., ex-

tensively simulated and informally checked. Before we would be satis�ed that

VIPER was veri�ed in the formal sense, we would expect to see complete formal

speci�cations at every hierarchical level, from the top-level instruction inter-

preter down to the gate-level design. Accompanying these speci�cations should

be proofs which showed that the gate-level design correctly implements the

top-level machine. These conditions could never have been met using RSRE's

original speci�cation and proof methodology. We pointed out several of these

de�ciencies, including the use of the informal simulation language ELLA for the

gate-level speci�cation, the lack of rigor in the Intelligent Exhaustion analyses,

and the incomplete nature of RSRE's block-level speci�cation. These points,

and the fact that the attempt to prove the correspondence between the top-level

and block-level machines in HOL is incomplete, lead us to the conclusion that

VIPER has not been formally veri�ed.

The VIPER work serves as a case study for several technology transfer issues,

clearly demonstrating a need for improved formal systems. Although veri�ca-

tion methods are an active area of research, application of these methods must

eventually be placed in the hands of hardware designers, or specially trained

engineers who are intimately familiar with the designs. It is signi�cant that

Hunt was an experienced hardware designer prior to the successful veri�cation

of the FM8501. Cohn was not, which only added to the problems caused by

attempting an after-the-fact veri�cation of an unfamiliar speci�cation.

There is also a need to improve the Boolean decision procedures in mechani-

cal reasoning systems, in order to avoid the necessity for special purpose methods

such as Intelligent Exhaustion. For example, Bryant [Bry86] recently introduced

a set of algorithms which provide extremely fast veri�cation of Boolean circuits.

It should be possible to soundly implement similar procedures in currently ex-

isting systems.

The VIPER project also pointed out the need for extensive libraries of lem-
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mas about arithmetic and logical operations on the basic data types found in

hardware speci�cations. This absence, and the presumed di�culty of creating

these lemmas in HOL was one of the reasons that Cohn's last proof attempt

was prematurely terminated. Something also clearly needs to be done about the

large amount of detailed interaction required to complete a complex hardware

proof using a mechanical assistant.

There are di�erent degrees of rigor possible when applying formal meth-

ods to hardware design: hand-written speci�cations, hand proofs, mechanically

recorded speci�cations, and mechanical proofs. The VIPER e�ort employed

all of these techniques with varying degrees of success, but it is clear that the

VIPER team was more thorough at specifying the abstract behavior of VIPER

than traditional engineering techniques would allow. Without the use of formal

techniques, the proofs of correctness could not have even been attempted. We

are encouraged by the use of formal techniques in VIPER, as their use demon-

strates what we believe to be a new paradigm in computer hardware speci�cation

and validation.

In conclusion, we admire the e�orts of the groups at RSRE and Cambridge

who took on a formidable veri�cation task. We don't consider the shortcomings

of the VIPER project as a pessimistic indication of the future of formal hardware

veri�cation. We are optimistic that the problems uncovered in the VIPER e�ort

can be overcome, and that this hard-won experience will bene�t future work.
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